
 14

Chapter 1: Finding and Validating Ideas

The first step is knowing what you want to write about. If you
picked up this book with a burning idea in mind, that is great.
Write it down with as much detail as you can, and then follow the
steps in this chapter to come up with ideas two through twenty. If
you are starting from scratch, do not worry. Coming up with
validated, well-scoped article ideas is not a daunting task when
approached methodically. This chapter describes the exact process
I have formulated through trial and error and repeated experience
to generate well-scoped articles with market demand. My ideas rely
on my existing skills and often prompt me to explore concepts that
further my own learning.

Every engineer has at least one good guide in them. ³
Angel Guarisma

I used to struggle to generate article ideas. I also used to rely solely
on moments of inspiration to keep my content pipeline full. When
I would pitch editors, it would take half an hour to write the email
because I would have to scramble to find a decent topic and
fRUPXlaWe a UeaVRQable SiWch. I XVed WR dUead Whe ShUaVe ´VeQd Pe
a cRXSle Rf ideaV.µ FRU Whe fiUVW WeQ RU VR aUWicleV WhaW I ZURWe, eYeU\
well-scoped topic with an outline that I actually stuck to was a
miracle. More than once I had to cover my mistakes with an
aSRlRgeWic dRZQZaUd UeYiViRQ Rf eiWheU Whe aUWicle·V VcRSe RU iWV
delivery date.

This was a bad system and led to me working through some
needlessly difficult rewriting to try to recover from insufficiently
thought-out pitches. To fix this issue, I created a more rigorous
system of idea generation and evaluation. Now, I maintain a list of
dozens of un-pitched article ideas waiting to take spots in my

 15

publication schedule as repeat clients ask for new work and I find
new publications to pitch to.

There are several angles to consider when determining what to
write about. Your existing skills, experience, and interests; your
SURVSecWiYe clieQW·V QeedV aQd ZaQWV; aQd \RXU SRWential
UeadeUVhiS·V kQRZledge, dRPaiQ, aQd aWWeQWiRQ VSaQ PXVW all aligQ
to create a great outcome for all parties. While prudent writers do
consider their audience, both the publisher and the reader, in the
planning process, you should start with yourself. If you are not
writing about topics that you find intrinsically interesting and that
are within your skillset (or ability to learn), it will not matter what
the other parties think because there will never be a finished article
for them to read.

For the rest of this chapter, we will mostly assume that there exist
publishers and readers with your same interests. While we will
cRQVideU e[iVWiQg clieQWV· iQWeUeVWV aQd Whe SRWeQWial UeadeUVhiS,
future chapters will explore these constituencies in greater depth.

1.1 The 9 Questions Process

Set aside fifteen minutes with your favorite thinking tool (pen and
paper, notes app, sidewalk chalk) to generate answers to these nine
questions. Each question is designed to expand the list of potential
topics, not constrain it. Write down everything you can possibly
think of for each question, even if it does not feel possible right
away. The next step will narrow your focus.

Run this exercise before you start writing or pitching clients and
run it again if your backlog of ideas ever gets uncomfortably low.
Ideally, after working through this process a few times, the
questions will become second nature to the point that fully formed
ideas are occurring to you just as often as you can execute them.

 16

1.1.1 Questions

The questions are broken into groups of three by category. As an
example, I completed the exercise myself; my answers are included
at the end of this chapter. You may wish to use the worksheet
included in Appendix B to complete the exercise.

Language Questions:

1. What programming languages do you know well enough to
write about?

2. What frameworks and libraries within those languages do you
enjoy using?

3. What company-specific technologies do you know well?

These three questions are very straightforward. Remember that you
do not need to be an expert on a topic to teach it. If you have
substantial experience, that is great, but as an intermediate
practitioner of a language or framework, you remember what you
struggled with as a beginner and can help others reach your level.

We often overestimate the expertise or the knowledge of
Whe geQeUal SXblic iQ WeUPV Rf VRPeWhiQg WhaW Ze·Ue
ZRUkiQg RQ. Ma\be \RX·Ye beeQ ZRUkiQg RQ«OAXWh
authentication in Rails for the last three weeks. Well, you
are now at the top 0.01 percent of programmers around
the world at OAuth authentication with Rails. It might
feel obvious now because you spent three weeks working
on it, but approximately everyone else has no idea how it
ZRUkV«. YRX PighW be SleaVaQWl\ VXUSUiVed if \RX ZUiWe
something that seems obvious to you. You might get a lot
Rf SeRSle ZhR Va\, ´WRZ I didQ·W kQRZ hRZ WhaW
ZRUked aQd WhaW iV VXSeU helSfXl.µ DRQ·W be diVcRXUaged

 17

from writing about topics that seem obvious. ³ Mark
McGranaghan

As a writer, you are introducing your readers to more than just
technologies; you are introducing them to new ways of thinking and
solving problems. Consider how technologies you know fit together
and think about meta aspects like their community, support, and
popularity.

WheQ \RX·Ue leaUQiQg Zeb aSS deYelRSPent with
P\WhRQ, iW·V Ueall\ XVefXl WR VWaUW ZiWh DjaQgR«. I lRYe Whe
Django community. I think that out of all of the
programming communities, it is the most friendly to
beginners. There are lots of beginner events³including
Django Girls³running workshops all over the US and
Europe. The Django conferences are beginner-friendly
and encourage beginners. I like Django not only for the
fact that it has all of the bits included, but also because I
kQRZ WhaW if I·P gRiQg WR bUiQg a QeZ SURgUaPPeU iQWR a
community, this community is going to support them. ³
Tracy Osborn

Topic Questions:

4. Which topic domains are you interested in?
5. Who are your clients and what topic domains are they

interested in? (It is okay to skip this question until you have
read Chapter 2.)

6. Who would you like to land as clients and what topic domains
are they interested in? (More about this in Chapter 2.)

Now that you have figured out what you can do, it is time for the
fun part: figuring out what you want to do. Think of topic domains
by developer-centered divisions, like data science and front-end

 18

development, but also by real-world application, like finance or
medicine. If you do not have clients yet, skip number five, and if
you are not looking for new clients, skip number six. However,
never leW \RXU SeUceSWiRQV Rf \RXU clieQWV· iQWeUeVWV cRQYiQce \RX WR
skip number four. I have written about web scraping for an AI blog
and AWS for a front-end magazine; editors tend to respond well to
enthusiastic pitches, even for topics where the connection is
tangential.

For question four, do not forget to list domains outside of
programming that you are familiar with.

Domain-specific knowledge is very, very useful in writing.
AQ\RQe caQ gR aQd leaUQ a WechQRlRg\ aQd Va\, ´AlUighW,
heUe·V hRZ WR ZUiWe \RXU fiUVW SURgUaP iQ P\WhRQ,µ bXW
have no real background in it. However, if someone is an
astrophysicist or a biochemist or a marketing growth
expert and they learn how to use Python, it becomes,
´HRZ WR ZUiWe \RXU RZQ WhiQg iQ P\WhRQ WhaW iV UeleYaQW
to being aQ aVWURSh\ViciVW.µ ThaW PagQifieV Whe ZUiWiQg·V
value by a hundred-fold, not merely by being more
specific in the topic but also being specific in the
problem space. There is domain-specific knowledge that
you know is going to go into an article like that. The
writer is going to write from the perspective of, say, a
biRchePiVW aQd WheUe·Ue YeU\ feZ SeRSle dRiQg WhaW, VR iW
adds a ton of value straight away. ³ Peter Cooper

Experience Questions:

7. What relevant prior projects have you done?
8. What real-world systems have you studied and could reverse

engineer?
9. What environments have you programmed in?

 19

Question seven is of vital importance. Having a prior project, even
if it is not in great shape, that you can reuse all or part of as the
foundation of an article makes the pitching, researching, outlining,
and writing processes all substantially easier. Most of the first
articles I wrote were based on personal or school projects that I
had completed and could adapt to teach a concept. For example,
the first article I wrote for FloydHub was about genetic algorithms.
Though the final product was a series of examples of basic genetic
algorithms in Python, the inspiration was a school project from
over a year prior intended to teach object-oriented programming in
Java.

A lRW Rf [ZhaW I ZUiWe] iV iQflXeQced b\ ZhaW I·P dRiQg iQ
my personal projects, and a lot of it is influenced by a
certain timeliness to articles that help them gain traffic. If
Svelte has just come out then you write about Svelte for a
little bit. I think that what a lot of people do is start by
trying to figure out what projects would make a good
article topic, but I try to break it down a little further than
WhaW. AVk, ´WhaW iV a gRRd SURjecW?µ aQd WheQ, ´WhaW
are the components WhaW Pake XS WhaW gRRd SURjecW?µ
Then, I try to break down every component into its own
article so that people can try to piece together one, two,
or even three articles. ³ Chris on Code

Good answers to question eight make great articles. The logic of
modeling or reverse engineering a real-world system is easy for
your readers to follow and thus provides a good structure to the
article. You can add and remove details where appropriate to bring
the article to the desired length and knowledge level.

Question nine is independent of the previous two. By
environment, I do not mean IDEs or frameworks, but real-world

 20

situations in which you have written code. Academic backgrounds
outside of computer science, the industry you work in and its
domain-specific problems, or targeting a particular group of users
are all interesting filters. Adding any one of those perspectives to an
article can make the content uniquely engaging to a narrower
market, which, unless taken to the extreme, is a good thing. Think
about problems that you faced working in those environments. Do
other people struggle with the same issues? If they do, solving a
problem from your chosen environment is a great basis for an
article.

You have to be thinking not selfishly but selflessly;
explain this problem and that helps not just me but
everyone else that has this problem. Now to be fair, there
could be some super narrow problem that only one
person will ever have, but in reality most problems
SeRSle UXQ iQWR a faiU QXPbeU Rf WiPeV, aQd iW·V beVW WR
caUU\ WhaW cRQceSW aURXQd iQ \RXU PiQd aV \RX·Ue
starting. ³ Jeff Atwood

1.1.2 Merging Answers

Reading over your answers will help article ideas form in your
head. Write them down. A complete map would combine each
answer to each question with every combination of every answer
from every other question. Fortunately, we do not need to run that
O(N^9) algorithm to find compelling article ideas. Instead, focus
on taking one element from each category and seeing how they
work together. Start by performing the obvious combinations, but
do not neglect the surprising ones. What would it mean to write
about using R to explore front-end development for startups
looking to build chat apps? At first, it seems like these topics have
little to do with each other, but a bit of creative brainstorming could

 21

lead to an article on building a web dashboard for analytics on real-
time data.

For each combination that makes any amount of sense, write a
couple of sentences describing the contents of the article. This is
not a formal outline, just a brief description of the idea, enough so
that you will be able to come back later and pick up on your
thought process.

Also, write titles. Titles are a great way of narrowing down your
audience. These are working titles; they do not have to make it to
SXblicaWiRQ. The fRUPXlaV ´^TRSic` iQ ^LaQgXage` fRU
^EQYiURQPeQW`µ RU ´CUeaWiQg ^S\VWeP` XViQg ^FUaPeZRUk(V)`µ
should get the job done in most cases. Keep your titles precise and
relevant; eschew clickbait.

A perennial issue is focusing on titles. We did see a
trend three to four years ago back where people were
trying to be very clickbaity with titles. There were all
kinds of publishing companies and sites that would take
feel-good stories from the media and write these really
long titles for WheP ZiWh ´aQd \RX ZRQ·W belieYe ZhaW
haSSeQed Qe[W!µ FRU e[aPSle, ´SRPeRQe fRXQd WeQ cXWe
kiWWeQV iQ a bag aQd \RX ZRQ·W belieYe ZhaW haSSeQed
Qe[W.µ The\ ZRXld SXW WhaW XS, bXW iW ZRXld jXVW be a
video like a YouTube embed or something and all they
were doing was siphoning all of the traffic with these
clickbaiW\ headliQeV fRU WhiQgV«. PeRSle aUe becRPiQg
ZiVe WR iW, aQd Whe\·Ue becRPiQg faWigXed, iQ Whe VaPe Za\
they became fatigued by banner ads and things like that.
³ Peter Cooper

Throw away any article ideas that do not appeal to you or seem
blatantly impossible, but try to keep an open mind about what you

 22

want to write throughout this nine questions process. Once you
have fully concluded your brainstorming, you can move on to
winnowing the list down to sure winners.

1.2 Idea Validation

At this point, you want to get a rough sense of the scope of and
market for each idea before committing to pitching or writing any
one of them. If you have ever performed market research for a
product idea, it is a similar process, but it is also much easier and
scaled-down. You do not have to perform nearly as thorough a
validation for three reasons:

1. Articles have a low opportunity cost to create.
2. Articles are very flexible in scope.
3. Articles can coexist with very similar work while still providing

value.

The opportunity cost of unsellable articles is fairly low as they only
take a few hours to write and can often be repurposed or published
on your personal site. Thus, you do not need to do as much
market validation for an article as you would for a minimum viable
product, which might take a hundred hours or more to develop.
However, it is still important to perform these validation steps; it is
better to sink five minutes into thinking up an idea that you cannot
execute than five hours writing an article that you cannot publish.
For a book or larger work, winnowing down ideas is a much more
intensive process.

The main filter that I wanted to apply was that I only
wanted to write about things that I was very intimately
familiar with. AWS is a vast topic meaning there are
hXQdUedV Rf VeUYiceV iQclXdiQg lRWV Rf WhiQgV I·Ye QeYeU
XVed P\Velf. BaVicall\, I didQ·W ZaQW WR dR aQ\ UeVeaUch

 23

or experimentation. I wanted something that could pretty
much write itself, something that was basically a brain
dump of things that I knew intimately, where I knew
what I wanted to say. In the introduction we mentioned
that we only talk about things that we have significant
first-hand experience with. That was the first cut.

Then there were a few RWheU WhiQgV WhaW didQ·W Pake iW.
Ironically one of the products that my co-author and I
ZRUked RQ RXUVelYeV ZheQ aW AWS, Ze didQ·W iQclXde iQ
the book. It was part of the time-boxing process. We
tried to group things that were related. The second thing
iV WhaW Ze lefW RXW WhiQgV WhaW didQ·W UelaWe WRgeWheU. The
theme was infrastructure-related topics; there were other
things like application monitoring and things like that
which we could have included³we have first-hand
experience with these things³but they would have made
the book significantly bigger and would have taken longer
to do. To be honest, we thought that it might be a good
candidate for a sequel, a part two on a different topic set.
³ Daniel Vassallo

You can get a lot done in two thousand words, a hundred lines of
code, and maybe a chart or two. The key issue, which we will
explore in Section 4.1, is appropriately scoping your sample
application or topic outline to include only relevant information
and assume the right level of background knowledge. Right now,
you mostly want to make sure that you are within the right order of
magnitude. Some publications offer quick tips, writing about the
semantics of a single line of code or short snippet might need
expanding. On the opposite end of the spectrum, a topic like
´MakiQg a WebViWe iQ DjaQgRµ ZRXld Qeed WR be bURkeQ dRZQ
substantially to extract achievable topics for single articles.

 24

We started Scotch with a lot of these simpler articles:
how to do form validation in Angular, how to do it in
React, how to handle event inputs in Vue. Then, we got
WR a SRiQW ZheUe Ze Vaid, ´Ok, leW·V dR WheVe Ueall\ cRRl
long-fRUP aUWicleV, ZheUe Ze ZRXld dR, ¶HRZ WR BXild
XYZ ZiWh TechQRlRg\ 1, TechQRlRg\ 2, 3, aQd 4.·µ
What we found was that a few people read and followed
through on those articles, but far fewer than the broader-
term articles. ³ Chris on Code

When you have an idea, make sure there is a demand for it.
Search for key terms for your title as if you were a reader trying to
find your article. Skim the top few hits. If your idea turns out to be
wholly original, then that is great, but you will need to do extra
research to make sure there is an interested readership for it.
Finding other articles on your topic is not a bad thing; on the
contrary, it means that you have identified something interesting
enough for other people to write about. However, if there are
hundreds of articles, books, videos, and other resources on the
topic (for example, say you want to write a general introduction to
programming in Python), you will have to carefully consider your
angle to stand out from the crowd. This angle could come from an
answer to question four or question nine. Also, check the dates on
the articles you find. If you are writing about a specific
implementation and the best competing article is, say, five years
old, for many topics that means your fresh take might be
marketable. After this validation step, note any similar articles you
find, as they will make good sources in the research phase.

Now is also a great time to audit the previous projects that you are
using for inspiration. Make sure that you have the appropriate
rights to repurpose the code and are not bound by any
employment restrictions or other contractual obligations not to

 25

write about a given subject. For showstoppers like that, it is best to
get ahead of the issue early.

1.3 Article Lifespan

In the validation phase, we considered how competing articles have
aged to see if there was a market need for your idea. Now, we will
think about what will happen to what you write over time.

I·P WU\iQg WR ZUiWe abRXW WhiQgV WhaW aUeQ·W, ´HeUe·V P\
WechQRlRg\ Rf WhiV SaUWicXlaU \eaU.µ YRX·Ue W\iQg \RXUVelf
too much to very specific bits of technology and specific
biWV Rf WiPe. YRX·Ue QRW lRRkiQg aW Whe PRUe Wimeless
aspects of the underlying principles, the underlying
human factors. If you look at my early blog, I did write
about some very technical stuff that now seems
completely pointless. It might have mattered for like a
\eaU, bXW QRbRd\·V gRiQg WR caUe about that post
aQ\PRUe. ThaW·V fiQe. If \RX lRRk aW Whe RQeV WhaW Ueall\
PaWWeU, iW·V abRXW Whe deeSeU hXPaQ iVVXeV Rf hRZ Ze geW
better at doing this as people. How do we become better
YeUViRQV Rf RXUVelYeV?« If \RX ZaQW WR ZUiWe VWXff WhaW·V
going to last, WhaW·V gRiQg WR haYe a lRQg Vhelf life, \RX
want to avoid really meticulous, detailed, in-depth
technical stuff because it has such a short shelf life in the
big picture of things. ³ Jeff Atwood

While it can be valuable to focus on long-term trends and
evergreen ideas, there is also a lot of value in up-to-date technical
content. Publishers prove this value with their demand for
technical tutorials.

If iW·V helSfXl aQd UeacheV a SURbleP SeRSle aUe haYiQg
ZiWh cXUUeQW WechQRlRg\, iW·V QRW ZURQg WR ZUiWe What. You

 26

have to mix it up, though. You have to write a variety of
content. Some percent of your content can be current
technology and another percent should be relatively
more timeless things about how to run projects, how to
deal with people, how to deal with emotions³things that
are more about sustainability in your career. For every
SRVW \RX ZUiWe abRXW VWXff WhaW·V haSSeQiQg WhiV \eaU, ZUiWe
a SRVW WhaW·V gRiQg WR be UeleYaQW WeQ \eaUV fURP QRZ. TU\
WR Pi[iW XS, aQd keeS a gRRd balaQce gRiQg. I·P QRW
sa\iQg dRQ·W ZUiWe abRXW cXUUeQW WechQRlRg\³I·P baVicall\
Whe ´Zh\ QRW bRWh giUl.µ Wh\ QRW bRWh? ³ Jeff Atwood

Taking this idea a step further, you should write one-year articles
for your clients and publish ten-year articles for yourself. This way,
you get immediate payment for the shorter-lived work while the
client bears the depreciation, and you accumulate the long-term
benefits of having published a sustained resource. Publishing
articles with a longer shelf life for yourself will help you build a
strong presence with fewer pieces than if your writing goes out of
date every year.

I·Ye beeQ ZUiWiQg SURfeVViRQall\ ViQce aW leaVW 2006. I
spent a lot of cycles early in my writing career writing
things that depreciated quickly, in the economic sense.
For example, writing about the current best practice on
Rails, especially back when Rails was moving at rapid
speed, did not set me up for long-term professional
success. I would probably not write on that topic today,
particularly not if I was writing in a concerted fashion.
The reason for that is that, as you mentioned, there are
some posts that maintain their value after ten years and
then there are some posts that are, like the Rails article,
probably good for about eighteen months. Eighteen

 27

months might sound like a long time. There are many
written artifacts that lose more than ninety percent of
their value within twenty-four hours. I like to say that
The New York Times throws out more excellent writing
than you will produce in your entire career every day
because the value of the ninety-fifth percentile New York
Times piece after forty-eight hours approaches zero.
Given that you are vastly less resourced than The New
York Times and you probably have a longer scale with
regards to your decision-making horizon, you should
intentionally try to get more of your pieces into the
bucket where they will continue to be valuable for years
ahead.

In 2012 I wrote a piece on salary negotiation advice for
engineers, and because I was writing on blog software
and blog software generally includes the date
prominently all over the piece, I routinely get questions
abRXW WhaW Siece aVkiQg ´IV WhiV adYice VWill gRRd?µ ThaW·V
a frustrating question for me to be asked: of course the
world has not advanced so much between 2012 and
2020 such that not negotiating your salary is suddenly a
good idea. The thesis of that piece is that you should
always negotiate your salary. Just the fact that I made the
date so prominent in the piece caused people to believe
that as soon as the date changed, which happens literally
every day, then the piece starts losing value. I am more
intentional now in writing to position my pieces as essays
rather than blog posts, because essays have an anchor
around timelessness and blog posts have an anchor
around being up-to-the-PRPeQW. I·P iQWeQWiRQall\ ZUiWiQg
most of my essays on subjects that will continue to be
relevant to my readers in ten years. ³ Patrick McKenzie

 28

This is also a good deal for your client. Their economics are
substantially different from yours such that they can create a viable
business model on content with a primary relevance that lasts for a
few years at best.

There exist publishers of technical content that either
have much better monetization options with respect to
one reader than an independent writer of technical
content would, or they are selling something that is not
itself content and so their investment in content is
essentially a marketing expense for the core thing. For
example, I work at a large software company. The core
economics of large software companies are extremely
healthy. The market characteristics of my employer are a
bit different than the typical enterprise software
company, but the typical enterprise software company
might have margins approaching one hundred percent
with deal sizes in the five or six figures. They can justify
an awful lot of spending on a daily basis to produce
content if it successfully gets decision makers for their
iQdXVWU\ WR geW iQ WRXch ZiWh Whe ValeV UeS. ThaW dReVQ·W
work out quite so well if yRX·Ue aQ iQdiYidXal eQgiQeeU
yourself and you have some allocation to make of doing
core billable work versus investing in your own
marketing; you would generally want to write artifacts that
would continue having value even in weeks or quarters
where you were primarily doing billable work. ³ Patrick
McKenzie

Not only are many publishers able to better monetize depreciating
work, but some extract long-term value from it. If a publisher
invests in keeping their old tutorials up to date, they can get fresh

 29

technical content for a smaller investment than commissioning
original work.

WiWh a libUaU\ aV laUge aV Whe RQe WhaW Ze haYe«Ze Uel\
on our open-source community to flag things that need
to be updated for us. Or, because our library is open-
source, community members might just make the update
WhePVelYeV aQd Ze·ll UeYieZ iW. We alVR haYe VRPebRd\
on staff who is dedicated to updating things³one person
on the team who basically takes feedback from the
community in the form of comments, GitHub issues,
etc., and updates documentation accordingly. When a
QeZ YeUViRQ cRPeV RXW Rf VRPeWhiQg, Ze·Ue able WR geW WR
it as fast as possible.

WheQ VRPeRQe aUUiYeV aW a Siece Rf dRcXPeQWaWiRQ, iW·V
iPSRUWaQW WhaW \RX·Ue QRW acWXall\ VeQdiQg WheP Rff RQ
the wrong track. Even if you write it really well, people
still just skim down to the thing that they need, so they
cRXld PiVV WhaW ZhaW Whe\·Ue lRRkiQg aW iV QRW abRXW Whe
right version or something. We put deprecated
notifications on guides, and we do this very purposefully
because sometimes people use legacy systems and they
need a Debian 5 version of a piece of documentation
becaXVe WhaW·V ZhaW Whe\·Ue XViQg. BXW, VRPebRd\ Zill
aUUiYe WheUe aQd PiVV Whe giaQW baQQeU WhaW UeadV, ´DRQ·W
lRRk aW WhiV gXide if \RX·Ue QRW XViQg DebiaQ 5.µ

The reason that we write documentation here at Linode
is to be genuinely helpful and to inspire confidence in
people. We have to make that investment to hit both of
those things³\RX caQ·W be geQXiQel\ helSfXl if \RX·Ue QRW
updating your documentatiRQ aQd \RX caQ·W iQVSiUe

 30

confidence if somebody breaks their system after
following your advice. ³ Angel Guarisma

Tech moves fast, but many people still work with legacy systems
every day and need high quality resources to help them solve their
problems.

We rarely delete versions because of the edge case
where people use legacy systems and come to those old
versions directly. ³ Angel Guarisma

The good news is that even if there is a competing technical tutorial
of high quality, it might be old enough that your fresher take on the
topic is still needed. The bad news is that it is really hard to write
evergreen technical content beyond basic introductions because
systems change so quickly. It is up to publishers to worry about
keeping their content up to date. As a writer, I focus on creating my
best work in the moment while making an educated guess
UegaUdiQg P\ ZRUk·V lRQgeYiW\.

//TODO
1. Complete the 9 Questions Process Worksheet from

Appendix B.
2. Combine your answers in as many ways as you can think of to

generate article ideas. Try to come up with at least ten titles.
3. Pick the three titles that you are the most interested in writing.

For each title, search keywords related to the topic to see if
there is room on the market for your article.

Here are my answers to the worksheet. (In between answering
these questions and publishing this book, I actually wrote and
published an article with CSS Tricks based on my answers to this
exercise, which I had not planned to do.)

 31

Some answers from the worksheet are circled. These answers
inform three titles we will be considering throughout this book.
The tutorials Scraping Shakespearean Sonnets and Shakespeare-
Style Sonnet Generator along with the technical article
Computational Poetry are based on the circled ideas. These
articles are presented and discussed in full in Act 2.

 32

The 9 Questions Process Example

 33

 34

	Prologue: Why Write Technical Content
	Chapter 0: You and Your Guide
	0.1 Intended Audience
	0.2 About This Handbook

	Act 1: The Craft
	Chapter 1: Finding and Validating Ideas
	1.1 The 9 Questions Process
	1.1.1 Questions
	1.1.2 Merging Answers

	1.2 Idea Validation
	1.3 Article Lifespan
	
	The 9 Questions Process Example

	Chapter 2: Publishers
	2.1 Finding Publishers
	2.2 Pitching
	2.2.1 Finding and Pitching Your Second Publisher

	2.3 Working for an Agency
	

	Chapter 3: Research
	3.1 Finding Sources
	3.2 Evaluating Sources
	3.3 Interviewing
	3.3.1 Finding the Right Interview Subject
	3.3.2 Synchronous Interviews
	3.3.3 Asynchronous Interviews
	3.3.4 What to Ask

	3.4 Citation and Rights
	

	Chapter 4: Preparing to Write
	4.1 Outlines
	4.1.1 Audience
	4.1.2 Structure
	4.1.3 Contents
	4.1.4 Cancelling an Article

	4.2 Sample Code
	

	Chapter 5: Writing for Software Developers
	5.1 The Actual Words
	5.1.1 Craft and Style
	5.1.2 Voice
	5.1.3 Your Writing Practice
	5.1.4 Markdown

	5.2 Graphics
	5.3 Overcoming Writer’s Block
	

	Chapter 6: Editing
	6.1 Content
	6.1.1 Structural Principles
	6.1.2 Code
	6.1.3 Reading Aloud

	6.2 Style Guides
	6.3 Working with Editors
	6.4 Editing for Self-Publication
	6.4.1 Beta Readers
	6.4.2 Professional Proofreading and Copyediting
	6.4.3 Edits over Time

	

	Chapter 7: Publishing
	7.1 Last Steps
	7.1.1 Skimmability

	7.2 Platforms
	7.2.1 Wordpress
	7.2.2 Ghost
	7.2.3 Static Site Generator
	7.2.4 Ebooks and PDFs
	7.2.5 Print

	

	Act 2: The Process in Action
	Chapter 8: Example Tutorial: Scraping and Generating Shakespearean Sonnets
	8.1 Reader’s Notes
	8.1.1 Tutorial Outline
	8.1.2 Writing Concepts

	8.2 Complete Tutorial
	Scraping and Generating Shakespearean Sonnets
	Setting Up
	English Class in under 200 Words
	First Stage: Scraping the Data
	Second Stage: Parsing Rhymes
	Third Stage: Building Sonnets
	In Conclusion

	Chapter 9: Example Tutorial: Practicing JavaScript with a Shakespearean Sonnet Generator
	9.1 Reader’s Notes
	9.1.1 Tutorial Outline
	9.1.2 Writing Concepts

	9.2 Complete Tutorial
	Practicing JavaScript with a Shakespearean Sonnet Generator
	Setting Up
	Data Structure: Arrays in Arrays in Arrays
	Making Random Samples
	Building and Adding a String to the HTML
	Making a Sonnet on a Button Press
	In Conclusion

	Chapter 10: Example Article: Computational Poetry
	10.1 Reader’s Notes
	10.1.1 Article Outline
	10.1.2 Writing Concepts

	10.2 Complete Article
	Computational Poetry
	Why Poetry?
	Considering Inputs
	Naive Selection
	Markov Chains
	Neural Networks
	In Conclusion
	Further Reading

	Act 3: The Business of Writing
	Chapter 11: Pricing
	11.1 Per Article
	11.2 Per Word
	11.3 Per Hour
	11.4 Free
	

	Chapter 12: Contracts and Invoicing
	12.1 Common Clauses in Contracts
	12.2 Writing Your Own Letters of Agreement
	12.3 Invoicing
	12.3.1 Payment Processors
	12.3.2 Payment Terms

	

	Chapter 13: Intellectual Property and Publication Rights
	13.1 Publication Rights
	13.1.1 Work for Hire
	13.1.2 First Serial
	13.1.3 Second Serial and Anthology Rights
	13.1.4 Retaining Rights
	13.1.5 Online versus Print

	13.2 Software Licensing
	13.3 Attribution
	

	Chapter 14: Content Monetization
	14.1 Advertising
	14.1.1 On the Death of Advertising
	14.1.2 Affiliate Links

	14.2 Sponsorships
	14.3 Sales and Subscriptions
	14.4 Content Marketing
	14.4.1 Indirect Monetization

	

	Chapter 15: Promoting Your Work
	15.1 Platforms
	15.1.1 Hacker News
	15.1.2 Reddit
	15.1.3 LinkedIn
	15.1.4 Twitter
	15.1.5 Niche Platforms

	15.2 Email Lists
	15.3 In Person
	15.4 Metrics
	15.5 Search Engine Optimization
	

	Chapter 16: Long-Term Engagements
	16.1 Books
	16.1.1 Working with Publishers
	16.1.2 Self-Publishing

	16.2 Series
	16.2.1 Columns
	16.2.2 Courses

	16.3 Alternate Formats
	16.3.1 Academic Papers
	16.3.2 Whitepapers and Case Studies
	16.3.3 Videos
	16.3.4 Speaking

	16.4 Jobs
	

	Appendices
	Appendix A: Complete Interview Transcripts
	Courtland Allen
	Jeff Atwood
	Chris on Code
	Peter Cooper
	Angel Guarisma
	Matt Levine
	Mark McGranaghan
	Patrick McKenzie
	Tracy Osborn
	Daniel Vassallo
	Cassidy Williams

	Appendix B: The 9 Questions Worksheet
	Appendix C: Sources
	Acknowledgements
	Legal

